Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 0381120180400121383
Genes and Genomics
2018 Volume.40 No. 12 p.1383 ~ p.1388
Bordetella bronchiseptica bateriophage suppresses B. bronchiseptica-induced inflammation in swine nasal turbinate cells
Park Ga-Young

Lee Hye-Min
Yu Hyun-Jin
Son Jee-Soo
Park Sang-Joon
Song Kyoung-Seob
Abstract
The development of therapeutic bacteriophages will provide several benefits based on an understanding the basic physiological dynamics of phage and bacteria interactions for therapeutic use in light of the results of antibiotic abuse. However, studies on bacteriophage therapeutics against microbes are very limited, because of lack of phage stability and an incomplete understanding of the physiological intracellular mechanisms of phage. The major objective of this investigation was to provide opportunity for development of a novel therapeutic treatment to control respiratory diseases in swine. The cytokine array system was used to identify the secreted cytokines/chemokines after Bordetella bronchiseptica infection into swine nasal turbinate cells (PT-K75). We also performed the real-time quantitative PCR method to investigate the gene expression regulated by B. bronchiseptica infection or bacteriophage treatment. We found that B. bronchiseptica infection of PT-K75 induces secretion of many cytokines/chemokines to regulate airway inflammation. Of them, secretion and expression of IL-1¥â and IL-6 are increased in a dose-dependent manner. Interestingly, membrane-bound mucin production via expression of the Muc1 gene is increased in B. bronchiseptica-infected PT-K75 cells. However, cytokine production and Muc1 gene expression are dramatically inhibited by treatment with a specific B. bronchiseptica bacteriophage (Bor-BRP-1). The regulation of cytokine profiles in B. bronchiseptica-induced inflammation by B. bronchiseptica bacteriophage is essential for avoiding inappropriate inflammatory responses. The ability of bacteriophages to downregulate the immune response by inhibiting bacterial infection emphasizes the possibility of bacteriophage-based therapies as a novel anti-inflammatory therapeutic strategy in swine respiratory tracts.
KEYWORD
Swine nasal turbinate cells, Bordetella bronchiseptica, IL-6, IL-1 ¥â, MUC1, Bor-BRP-1
FullTexts / Linksout information
Listed journal information
SCI(E) ÇмúÁøÈïÀç´Ü(KCI)